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Abstract

We investigate the topological structure of the subgraphs of dictionary graphs
constructed from WordNet and Moby thesaurus data. In the process of learning
a foreign language, the learner knows only a subset of all words of the language,
corresponding to a subgraph of a dictionary graph. When this subgraph grows
with time, its topological properties change. We introduce the notion of
the pseudocore and argue that the growth of the vocabulary roughly follows
decreasing pseudocore numbers—that is, one first learns words with a high
pseudocore number followed by smaller pseudocores. We also propose an
alternative strategy for vocabulary growth, involving decreasing core numbers
as opposed to pseudocore numbers. We find that as the core or pseudocore
grows in size, the clustering coefficient first decreases, then reaches a minimum
and starts increasing again. The minimum occurs when the vocabulary reaches
a size between 103 and 104. A simple model exhibiting similar behavior is
proposed. The model is based on a generalized geometric random graph.
Possible implications for language learning are discussed.

PACS numbers: 05.90.+m, 02.50.−r

1. Introduction

‘If you were asked to name the trait which most decisively distinguishes human beings from
all other creatures on the planet, what would you choose? Love? Warfare? Art and music?
Technology? Perhaps. But most people who have considered this question at length have come
up with a single answer: language.’ This statement, taken from the introduction of the book
by Task [1], needs no further justification. In addition to being the single most remarkable
characteristic of humans, language presents itself as an immensely complex structure. Like
many other complex systems, language can be viewed as a collection of discrete components
interacting with each other in various ways. Depending on the ‘magnification factor’, one can
consider these components to be phonemes or letters, syllables, words, phrases or even entire
sentences.
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In this paper, we will mainly consider words and their interaction within a language.
Although lower or higher level language features are important and interesting, one cannot
underestimate the importance of vocabulary in learning and using a language. Contemporary
language acquisition specialists, for example, recognize the central importance of the
vocabulary, and in the last two decades a lot of research effort has gone into the study of
vocabulary learning strategies, determining what it means to ‘know a word’, and methods of
testing vocabulary knowledge and use [2].

One of the first questions that is encountered when one learns a new language is ‘how
much vocabulary do I need to know?’. Of course, the most ambitious goal would be to know
all words of the language. This, however, is usually impossible to achieve. For example,
although comprehensive dictionaries of English can easily contain over 105 headwords, it
has been demonstrated that educated native speakers of English know only a fraction of this
lexicon—about 20 000 word families [3].

When one learns a new (second) language, the set of known words is steadily increasing
with time. Many language scholars agree that the significant threshold in the language
learning process occurs around 3000–5000 word families. It turns out that once this threshold
is reached, learners can understand well above 90% of the running words in a typical text [4],
and such high text coverage appears to be a necessary condition for transferring reading skills
from the first to the second language [5].

In [6], we investigated a simplistic model of vocabulary growth by considering a graph
GWeb obtained from the Webster dictionary. Dictionary headwords were vertices of the graph,
and two words were connected by an edge if one word appeared in the definition of the other
word. We then assumed that the learner learns consecutive words in the order of decreasing
frequency, that is, the most frequent words first. When the learner knows n top ranking words,
he/she essentially ‘knows’ a subgraph of GWeb spanned by these n words. With time, this
subgraph grows in size, since n steadily increases. We found that many properties of the
subgraph, such as, for example, its diameter or density, change monotonically with n, but the
clustering coefficient exhibits rather curious behavior: first it decreases with growing n, yet
around n = 4000 it starts increasing again. This indicates that some change in topology of the
subgraph takes place when the size of the vocabulary reaches 4000. While it remains unclear
if this phenomenon has anything to do with the threshold described in the previous paragraph,
it nevertheless should be investigated in greater detail.

In this paper, we will first show that the idea of a ‘growing subgraph’ can be replaced
by a purely static model, and that the minimum reached by the clustering coefficient can be
understood in static terms as well, as a certain property of the so-called clustering spectrum of
the entire graph, to be introduced in subsequent sections. We will also show that this minimum
occurs in graphs constructed from very different data than those used in [6], confirming that it
is a robust phenomenon.

2. Interaction graphs

We used two very different data sets: the WordNet database [7] and the Moby lexicon project
[8]. From the WordNet database, we extracted all nouns, verbs, adjectives and adverbs together
with their definitions. All headwords and words occurring in definitions were stemmatized
using the Porter stemming algorithm [9] to remove common morphological and inflectional
endings. All compound terms and their definitions were removed. This means that, for
example, definitions of terms such as fall off were discarded, but fall itself remained. This
resulted in 45 204 unique headword stems, which were assigned to separate vertices of a
graph. Two vertices A and B (headword stems) were connected with an edge if and only if A
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Figure 1. Degree distribution of GW (left) and GM (right). The dashed lines represent lines of best
fit for equation (1), while the solid lines are for equations (2) and (3).

occurred in the definition of B or conversely. The resulting graph has 551 940 edges, and in
what follows it will be referred to as GW .

From the Moby lexicon we used the Moby thesaurus to construct another graph. This
time, we used as vertices all words (including compounds) occurring in the thesaurus, both as
headwords and as synonyms. It should be noted here that the term ‘synonym’ is used in the
Moby thesaurus in a very broad sense. Under a given headword, one finds a large number of
words which are not only strict synonyms but also hypernyms and hyponyms, and other words
with a meaning similar to the headword. Similarly as before, two vertices A and B are joined
with an edge if the thesaurus lists A as one of the synonyms of B or conversely. The resulting
graph, to be called GM, has 103 306 vertices and 1 783 351 edges. Note that stemmatization
was not performed for GM, since all headwords and synonyms in the thesaurus are listed in
their canonical form.

It should be noted at this point that the thesaurus graph has been studied extensively
in recent years [10–12], and graphs based on the WordNet database have been investigated
too [13]. These studies revealed small-world type structure in thesaurus graphs, and a semi-
empirical description of their degree distribution and other properties has been proposed. In
figure 1 the degree distributions of GW and GM are shown.

Even though both graphs seem to exhibit power-law-like behavior for large degree values
of degree n, they behave quite differently for small n. In order to describe these degree
distribution curves empirically, we fitted a number of known distribution functions. One of
them was the distribution proposed by Tsallis and de Albuquerque for citations of scientific
papers [14], which was also used in earlier studies of the thesaurus,

f (n) = N0

[1 + (q − 1)λn]q/(q − 1)
, (1)

where N0, λ and q are the parameters. Here n denotes degree, and f (n) denotes number of
vertices having degree n. The dashed lines in figure 1 represent the lines of best fit for this
equation. One can see that while the Moby thesaurus degree distribution is reasonably well
described by equation (1), the fit for the WordNet graph is quite bad. In fact, in both cases the
fit is less than ideal.

Since for subsequent investigations a more accurate description of degree distributions
was needed, we produced a very precise fit using functions with a much larger number of
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parameters. For large degrees n, the distribution appears to follow a power law; hence, it is
reasonable to write

f (n) = R(n)nα, (2)

where R(n) is a function representing deviation from the power law such that R(n) → 1 as
n → ∞. Unfortunately, in order to obtain a very accurate fit, R(n) must be rather complicated.
We found that the following function works quite well for both GW and GM:

R(n) = A exp

(
P4(ln n)

P5(ln n)

)
, (3)

where P4 and P5 are, respectively, polynomials of fourth and fifth degrees (in the log–log plot
this becomes a rational function). The solid lines in figure 1 represent lines of best fit for
the above function. We obtained α ≈ −2.74 for the Moby thesaurus and α ≈ −1.66 for
the WordNet dictionary. Obviously, the choice of (3) is rather arbitrary, and due to the large
number of parameters, it is not surprising that it is possible to obtain a good fit. For that
reason, we do not attach any particular meaning to this choice. The fitted function effectively
provides a ‘smoothing’ of data, and not much more.

3. Core decomposition

Having defined the interaction graphs, we now turn our attention to the process of language
acquisition. It is well known that the frequency of occurrence of a word in a large corpus
(textual or spoken) roughly follows a power law known as the Zipf law. As a result, a
relatively small number of high-frequency words suffices to cover a significant proportion
of the text, as we already remarked in the introduction. A natural consequence of this is
the recommendation of language specialists to learn the most frequent words first, and then
proceed to less frequently encountered words [2].

Since a dictionary such as the WordNet dictionary is also an English text (although of
a special type), the rank-frequency distribution of words in that dictionary follows the Zipf
law. Obviously, when we construct the graph GW , the degree of a given vertex (stem) will
be closely related to the frequency of occurrence of that stem in the dictionary. Vertices of
high degree will generally correspond to high-frequency stems and conversely. One can say,
therefore, that when one learns the language, one should start with high-degree stems and
proceed toward stems of lower degree.

As one learns new vocabulary following the strategy outlined above, then at any given
moment, the set of known words (stems) forms a subgraph of GW or GM. The notion of the
pseudocore will be convenient to describe these subgraphs.

Definition 1. For a non-negative integer k, the k-pseudocore of a graph is the maximal
subgraph such that its vertices have a degree greater than or equal to k, where by the ‘degree’
in this definition we mean the degree of the vertex in the original graph, not in the subgraph.
If G is a given graph, we define G[k] to be the k-pseudocore of G.

Using this definition, we may say that if one starts learning vocabulary by following the
rank-frequency list, the known vocabulary will initially consist of vertices of G[kmax], where
kmax is the largest degree in G, then one expands the vocabulary to G[kmax−1], followed by
G[kmax−2], etc.

The reason why we used the prefix ‘pseudo’ in the above definition is that the notion of
the k-core is much more often used in graph theory. The definition of the k-core is similar.
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Figure 2. Example of the k-core decomposition of a graph (after [15]).
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Figure 3. Degree of vertices versus core number for GW (left) and GM (right). The solid line
represents the average degree of vertices with a given core number.

Definition 2. For a non-negative integer k, the k-core of a graph is the maximal subgraph
such that its vertices have a degree greater than or equal to k. By the ‘degree’ in this definition
we mean the degree of the vertex in the subgraph. If G is a given graph, we define G{k} to be
the k-core of G.

For k = 0, 1, 2, . . . , subgraphs G{k} form a nested sequence of graphs where G{k+1} ⊂
G{k}. Construction of the sequence of k-cores is known as k-core decomposition [16]. There
exists an algorithm for k-core decomposition [15, 16] with the time complexity of O(n + e),
where n is the number of vertices in G and e is the number of edges of G. This means that
even for very large graphs, k-cores can be computed in an efficient way. Figure 2 shows an
example of a graph and its k-core decomposition.

The core (pseudocore) number of a given vertex is the number of the highest core
(pseudocore) to which the vertex belongs. A set of all vertices with core (pseudocore)
number k will be called the k-layer (k-pseudolayer). Note that the pseudocore number of a
vertex of the graph G is equal to its degree in G.

How different are cores and pseudocores? In figure 3 we plot degrees of vertices versus
core numbers for all vertices of GW and GM, together with the average degree for a given core
number, represented by the solid line.

One can observe that the average degree is mostly an increasing function of the core
number. This means that on average, vertices of high degree have a high core number,
and vertices of smaller degree have smaller core number. Obviously, high-degree vertices
are those which represent high-frequency words. This suggests that instead of considering
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‘growth of vocabulary graphs’ following pseudocores as described earlier, one could consider
an alternative strategy, learning first words belonging to the k-layer with the highest k, the
words learned afterward belonging to the (k − 1)-layer, then to the (k − 2)-layer, etc. We
will consider both ways (following cores and pseudocores), but in both cases the notion of
the core or the pseudocore effectively replaces a dynamical process (‘growing graph’) by a
static property of the graph, which can be investigated as a purely topological feature of large
graphs, without any reference to time.

4. Clustering spectra

As mentioned in the introduction, among quantities which are typically used to describe
topology of large graphs, the clustering coefficient is particularly interesting. The clustering
coefficient, originally introduced in [17], represents the average probability that two neighbors
of a given vertex are also neighbors of one another. More formally, given a vertex v of a graph
G, let use denote by N(v) the number of edges between vertices of v.

Definition 3. The local clustering coefficient Cv(G) is defined as

Cv(G) = N(v)(deg(v)

2

) ,

where deg(v) is the degree of v, that is, the number of edges connected to v. The clustering
coefficient of the entire graph G is then defined as C(G) = |G|−1 ∑

v Cv(G), where |G|
denotes the number of vertices in G and the sum runs over all vertices of G.

Obviously, the local clustering coefficient varies widely from node to node. In [18, 19]
it has been argued that for networks exhibiting hierarchical organization, the local clustering
coefficient C(m) of a node with m links follows the scaling law

C(m) ∼ mγ , (4)

where γ = −1. In order to check whether this applies to GM and GM we plotted the local
clustering coefficient of a vertex versus degree of that vertex for all vertices of GW and GM,
as shown in figure 4. The distribution of data points is rather wide, and one can only say that
the upper boundary of the data set seems to follow (rather roughly) m−0.8 for GW and m−1 for
GM. While the correlation between C(m) and m is not as strong as in some graphs reported
in [18], nevertheless some signs of the behavior similar to equation (4) are present. This may
indicate that elements of hierarchical organization do exists in GW and GM.

Let us also remark that for a vertex with a given degree, the value of the clustering
coefficient can vary quite significantly. To illustrate this, consider two vertices of GM,
corresponding to words anxiously and tractor. These two words have the same degree
equal to 8, yet their local clustering coefficients are, respectively, 1 and 0.142 857. The
headword anxiously is connected to eight headwords: impatiently, keenly, avidly, promptly,
quickly, readily, with open arms, eagerly. Each of the words from this set is connected to all
others in the set, and therefore the local clustering coefficient of anxiously is equal to 1. The
headword tractor is also connected to eight words, which are machinery, automobile, pusher,
tank, truck, creeper, duck, amphibian. Among these eight words, however, there are only four
pairs of direct neighbors, namely machinery–pusher, automobile–machinery, tank–truck and
duck–truck. As a result, the local clustering coefficient of tractor is equal to 4

28 = 0.142 857.
The local clustering coefficient can be understood as the ratio of the number of edges that

exist in the neighborhood of v to the maximum number of edges that could potentially exist in
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Figure 4. Plot of the local clustering coefficient as a function of the degree of a vertex for all
vertices of GW (left) and GM (right). The dashed line in the case of GW (left) has slope −0.8, and
for GM (right) −1.0.

that neighborhood of v, which happens to be
(deg(v)

2

)
. The clustering coefficient C(G) of the

whole graph G is obtained by averaging Cv(G) over all vertices v belonging to G.
Clustering coefficient of the graph is a measure of the ‘cliquishness’ of the graph. One can

say that Cv(G) characterizes local ‘cliquishness’ at vertex v, while C(G) characterizes global
‘cliquishness’ of the entire graph. In practice, however, the local clustering is too detailed to be
useful, simply because we have as many Cv(G) numbers as vertices in the graph. The global
clustering, on the other hand, is too coarse, being just one scalar value for the entire graph.
We will now show how to construct an intermediate characterization of clustering, which lies
(in terms of usefulness) somewhere between ‘microscopic’ Cv(G) and ‘macroscopic’ C(G).
It will be called a ‘core/pseudocore clustering spectrum’.

Definition 4. A set of pairs (|G{k}|, C(G{k})), where |G| denotes the number of vertices of
G, will be called the core clustering spectrum of G. Similarly, a set of pairs (|G[k]|, C(G[k]))

will be called the pseudocore clustering spectrum. The value of k ranges from 1 to kmax, where
kmax is the largest k for which, respectively, G{k} or G[k] is non-empty.

We will visualize the core clustering spectrum by plotting points (|Gk|, C(Gk)) on a
plane. The value of k will range from 1 to kmax, where kmax is the largest k for which Gk is
non-empty.

For some graphs, the core clustering spectrum is very narrow, meaning that the number
of points in the spectrum is small. This is the case, for example, for classical Erdös–Rényi
random graphs. In other cases, the spectrum may be quite wide, as we will see in the subsequent
sections.

5. Characterization of the structure

Both core and pseudocore clustering spectra have been computed for GW and GM. The results
are shown in figures 5 and 6. It is rather remarkable that all four graphs exhibit well-defined
minima occurring somewhere between the core size 103 and 104.

An immediate question which presents itself after inspection of these spectra is: Are
there any known random graph models which would exhibit similar U-shaped spectra? We
computed the spectra of classical random graphs, Barabasi–Albert random graphs with a
variety of parameters, ‘power-law cluster graph’, GNP graph and several others. None of
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Figure 5. Core and pseudocore clustering spectrum of GW .
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Figure 6. Core and pseudocore clustering spectrum of GM.

them exhibits a minimum in the spectrum, and most of the time their spectra are monotonic
functions of the core size.

We also generated random graphs with the same degree distribution as GW and GM using
the so-called configuration model [20] as well as using the Havel–Hakimi algorithm [21]. To
be precise, we used fitted functions given by equation (2) as degree distributions.

Using the first of these methods, one initially creates a degree sequence drawn from the
distribution (2). Vertices are created with stubs for attaching edges, such that the number of
stubs is equal to the degree of the vertex. Two randomly selected available stubs are connected
with an edge, and this procedure is repeated until all stubs are exhausted.

Another method for constructing a random graph with a given degree sequence is known
as the Havel–Hakimi algorithm [21]. The algorithm creates the desired graph by successively
connecting the node of highest degree to other nodes of highest degree, resorting the remaining
nodes by degree, and repeating the process.

We used both methods to create random graphs of the same size as GW and GM using
the fitted equation (2) as the degree distribution. We found that in spite of the ‘right’ degree
distribution, the core spectra of these graphs do not resemble the dictionary graph spectrum at
all. In both cases, clustering coefficient decreases with the growing core size, and no minimum
is present.
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6. Toward the model

In [11], it has been demonstrated that thesaurus dictionaries share some of the statistical
properties of low-dimensional (d = 2) Euclidean (geometric) graphs. For this reason, in the
search for a simple model of dictionary graphs, we next turned our attention to geometric
graphs.

The geometric random graph [22] is a type of random graph which is constructed by
placing vertices at random uniformly and independently on the unit square. Vertices u, v are
connected if and only if the distance between them is less than or equal to a given threshold
r, that is when d(u, v) � r . The distance d(u, v) is often computed assuming the periodic
boundary condition, in which case the unit square effectively becomes a torus.

The clustering spectrum of a geometric graph defined above does not, unfortunately,
exhibit any minimum, so the normal geometric random graph cannot serve as a model of the
dictionary graph.

Let us, however, consider a natural generalization of the geometric random graph, in which
the parameter r is vertex dependent. To be precise, we place vertices at random uniformly
and independently on the unit torus. Vertices are numbered by an index i ranging from 1 to n.
Each vertex has its own ‘range parameter’ r(i). Two vertices labeled i and j are connected if
and only if d(i, j) � r(i) or d(i, j) � r(j), that is, when one of them is within the range of
the other.

Suppose now that r(i) is an increasing function of i. This would mean that vertices with
large i have a large range, and are likely to be connected to a larger number of other vertices
than those with small i. This is precisely what we would want if vertices represented words
of the language, and i was the reversed order in which the words are learned. The words one
learns first are the high-frequency words, and in the dictionary graph they should be linked
to a large number of other words. One would therefore expect that a generalized geometric
random graph with increasing r(i) might have properties similar to the dictionary graph.

We considered a simple form of r(i), chosen rather arbitrarily. Let n be the desired
number of vertices in the generalized geometric random graph, and m be the desired number
of edges. We take

r(i) = λ

(
i

n

)γ

, (5)

where γ > 0. The constant λ is determined by the requirement that the total number of edges
should be equal to m, meaning that

1

2
nπ

n∑
i=1

r(i)2 = m. (6)

The factor 1/2 appears in front of the sum since all edges are counted twice. This leads to

λ =
√

2m

nπn2γ

(
n∑

i=1

i2γ

)−1/2

. (7)

Approximating the sum by an integral, after integration we obtain

λ ≈
√

2m(1 − n−1−2γ )

(1 + 2γ )π
. (8)

Using this form of r(i), we generated a number of graphs, to be called generalized
geometric random graphs, using different values of the parameter γ , and we computed their
core clustering spectra. A typical core clustering spectrum of a generalized geometric random

9



J. Phys. A: Math. Theor. 42 (2009) 375101 H Fukś and M Krzemiński
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Figure 7. Core clustering spectrum of the generalized geometric random graph with γ = 5 and
the same number of edges and vertices as GW .

graph is shown in figure 7, for the graph with γ = 5 and the same number of edges and vertices
as GW . One can see that the spectrum indeed exhibits a well-defined minimum, occurring
roughly around 15 000. Obviously, it is still far from the spectrum of GW shown in figure 5,
yet the general shape is quite similar. One clear difference is that in figure 5 there is only
a slight drop in the clustering coefficient at the right end of the spectrum, while this drop is
much larger in figure 7 (last two points of the spectrum). This is due to a large number of
isolated components, which, in the case of generalized geometric graph, are simply isolated
vertices, which belong to the outermost core and significantly contribute to the drop in the
average clustering observed at the right end of the spectrum.

7. Interpretation and conclusions

We demonstrated that the core clustering spectra of dictionary graphs posses some features
which are not present in commonly studied models of random graphs, with the exception
of generalized geometric random graphs. This indicates that the topological structure of
dictionary graphs may be mathematically very interesting, and the connection with geometric
graphs needs to be further explored, as it may shed some more light on dictionary graph
topology.

Are there, however, any practical implications of these findings? There might be, since
our results suggest two strategies for learning the vocabulary of a foreign language.

(i) We start with words which are most frequent, and thus have the highest pseudocore
number, progressing toward less frequent words.

(ii) We start with words of the highest core number, progressing toward smaller core numbers.

Is there any advantage of the second strategy? We argue that there might be some.
Consider again figure 6. One can see that the shape of both core and pseudocore spectra
is similar in the sense that they both first decrease, and then start increasing with growing
subgraph size. Nevertheless, for a given subgraph size, the clustering coefficient is higher for
the core than for the pseudocore. This means that the strategy (ii) allows one to maintain a
higher clustering coefficient than (i), yet on average, more frequent words are still learned at
the beginning, and less frequent words later. Maintaining high clustering coefficient means

10
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that newly learned words are placed in areas of semantic space which are connected to cliques
of known words, so that one ventures into new territories without straying too far from well-
known areas. This may result in slightly smaller text coverage, but, on the other hand, in higher
‘coherence’ of the vocabulary, and perhaps better grasp of the meaning of newly learned words.

An equally interesting problem arises from the possible connection of dictionary graphs
with geometric graphs. On one hand, it should be possible to tune the construction of
generalized geometric graphs to find a model with clustering spectrum (and other properties)
more closely resembling GM or GW , thus producing a more accurate model of these graphs, by
choosing, for example, a different form of r(i) or by changing the way the graph is generated.

But one can also go in the opposite direction. If the topological structure of dictionary
graphs somewhat resembles low-dimensional generalized geometric graphs, it may be possible
to embed GM or GW in low-dimensional Euclidean space in such a way that the distribution
of edge lengths is similar to what is implied by (5). The coordinates of a given word in this
space could then have some interesting linguistic meaning. Work in this direction is ongoing
and will be reported elsewhere.
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